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ABSTRACT 

The next-generation airborne networks (ANs) will be all IP-

based to provide seamless connectivity and reachability among 

network hosts including diverse aircrafts and unmanned air 

vehicles. Due to the dynamic nature and bandwidth/capacity 

limited channel condition of airborne network, providing 

dynamic yet efficient network service always faces many 

challenges. In this paper, we summarize the IANetServ 

architecture, which provides robust and auto-configurable 

network service framework suitable for airborne network 

environments. We also present our implementation effort into 

simulation and hardware to evaluate the performance of the 

IANetServ architecture. Amongst many different types of network 

service, we limit our presentation of the IANetServ architecture 

to the address configuration and name resolution. 

1. INTRODUCTION 

Airborne Networks (ANs) have recently received 

enormous attention as a new emerging all IP-based 

network technology. It has been envisioned as an 

infrastructure to provide communication services to a set of 

heterogeneous mobile airborne platforms by 

interconnecting airborne, terrestrial and space network 

together [2]. ANs are still in its early stage of development 

and commonly believed to have some flavor of dynamic 

mobile ad hoc networks (MANETs), i.e., no fixed 

infrastructure will be supported and nodes join or leave the 

network frequently without planning. Given the 

dynamically changing topology, limited network 

bandwidth, and self-organizing nature of domains due to 

high node mobility, designing an appropriate network 

service framework also confront these challenges.  

Some initial research efforts [2]-[5] have been made to 

address these challenging issues. An auto-configuration 

approach for network services in the AN environments [2] 

was proposed by using randomly generated 57bit subnet 

ID, multicast DNS for name service. This approach 

provides a low possibility of address collisions for 

relatively large network (i.e., 1000 airborne nodes).  

However, there is always possibility of address collision. In 

addition, this approach is not compatible with existing 

standard implementations and lack of security 

considerations.   

In [4], an Integrated robust and Auto-configurable Network 

Service (IANetServ) framework was initially designed in 

order to provide robust and auto-configurable network 

service support in ANs. For network configuration, an 

automatic conflict-free address assignment was developed 

with built-in mechanisms to further support network 

dynamics, such as domain splitting and merging. For name 

resolution service, the concept of Logical Name Service 

(LNS) was introduced to provide robustness and efficiency. 

We also extended the IANetServ framework to be diretly 

applied to the JANSS (Joint Airborne Network Service 

Suite) architecture [6][7]. In addition, the IANetServ 

framework was enhanced by adding security boundary to 

make it fit into the security enhanced airborne platform for 

information assurance.  

As a continuous effort, we implement the extended 

IANetServ framework on our in-house agent-based 

network simulator and wireless routers. In this paper, we 

present our implementations of the extended IANetServ 

framework in detail. It is noted that amongst diverse 

network services, we focus more on the address service and 

name service.  

The rest of the paper is organized as follows. Section 2 

reviews the JANSS design document for better 

understandings of the JANSS architecture and the extended 

IANetServ framework. Section 3 describes our 

implementation on our in-house java simulator and Linksys 

wireless router platform. Section 4 concludes IANetServ 

design and implementation followed by a short 

acknowledgement.    

2. NETWORK SERVICE ARCHITECTURE 

In this section, we briefly summarize the (1) JANSS, which 

defines overall features and functions for Joint Airborne 

Network (JAN) and (2) IANetServ framework, which 

enables dynamic and autonomous network service among 

heterogeneous airborne platforms. More detail description 

of each IANetServ components can be found at [3] and [4]. 

2.1 JANSS architecture 

The JANSS design document draws the whole picture of 

integrated features, concept, standard and functions which 

enables each airborne platform participate in the future all 

PREPRINT
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IP-based AN. The JANSS will allow air and maritime 

platforms to be interoperable among themselves, and with 

other edge tactical networks and Intelligence, Surveillance 

and Reconnaissance (ISR) networks through transparent IP 

connectivity. The required functional blocks for airborne 

platform include name service, address service, service 

discovery, mobility management, security service, and 

network management. It also defines a simplified airborne 

platform as in Figure 1. Each airborne platform supports 

and manages multiple local area networks (LANs) through 

AN router which functions as a gateway and maintains 

several RF links via IP supported radios. Each IP radio also 

has Mobile Network Router which provides routing 

capability within each RF link. 

 

Figure 1: Airborne Network Platform in JANSS [6] 

The current JANSS architecture assumes the airborne 

network operates at single security level (i.e., data 

protection is performed via link encryption only). 

However, in reality, the access to information and services 

are based on the different sensitivity level classifications. 

These Multiple Independent Levels of Security have 

specific policies, procedures and requirements. A user must 

not be able to read information at a security level higher 

than its own, nor be able to write information to a lower 

classification level. In fact, information must be mutually 

invisible among levels/classifications/compartments. As it 

is very inefficient for each security level to have its own 

physical network, each classification level will transit 

through an independent Secure Virtual Private Networks 

(VPNs) over a shared backbone.  

2.2 IANetServ framework 

The IANetServ framework mainly consists of two network 

services: address configuration, and name resolution.  

For address configuration service, the ADCA (Adaptive 

Domain Configuration Agent), DAP (Domain 

Announcement Protocol), DHCP (Dynamic Host 

Configuration Protocol), and DRCP (Dynamic and Rapid 

Configuration Protocol) were designed to provide 

automatic conflict-free address assignment under 

bandwidth constraint environment. Similar to the legacy 

Dynamic Host Configuration Protocol (DHCP), the DRCP 

provides IP address configuration within one-hop 

proximity. The DCDP distributes IP address pool to one 

hop neighboring nodes by splitting its own address pool to 

ensure conflict-free configuration. By combining both 

DRCP and DCDP processes together, a subset of nodes in 

the large network carry a chunk of IP address space and 

assign the IP addresses to other non-configured nodes. In 

doing so, they perform as a distributed and independent 

address server. The DAP is a domain maintenance protocol 

which handle network splitting and merging by using 

periodic beacons. The ADCA controls configuration 

process by monitoring what information has been 

distributed through the DCDP and DRCP processes in each 

domain.  

 

Figure 2: Address auto-configuration mechanism 

For name resolution service, we proposed the Logical 

Name Service (LNS), which is an extension of legacy 

Domain Name System (DNS). The fundamental 

philosophy of LNS is based on the ideas of mobile IP and 

the work in [10][11]a. A LNS server maintains three 

different mapping tables, i.e., Topological, Logical, and 

Home tables. The topological table contains name to IP 

address mapping within its own domain. The logical table 

maps a group of logical names to the IP address of the 

logical home servers. The home table maps a particular 

logical name to the IP address of the server that is currently 

responsible for the specific entity.  

While designing the LNS mechanism, we put special 

emphasis on handling both node and name server mobility 

to address the high dynamics in airborne environments. 

Such goal could be achieved by adding dynamic server 

configurations and autonomous linkages to enhance its 

robustness and efficiency. In each domain, a name server is 

dynamically elected to provide name resolution service in 

its own domain. A backup name server might also be 

selected when necessary.  

2.3 IANetServ framework extension  
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We extended the IANetServ framework to be compatible 

with JANSS architecture. Besides of address configuration 

and name resolution service, the IANetServ framework 

considers the various levels of security aspect at each 

airborne platform. In our extended design, the NSA-

endorsed Inline Network Encryptors (INE) or High 

Assurance Internet Protocol Encryptor (HAIPE) device 

[10][11] divides airborne platform into the untrusted black 

network and trusted red network. The key issue of 

extending the IANetServ framework is where the different 

IANetServ components should reside in the JANSS 

architecture to provide efficient yet secure network service. 

Figure 3 shows our proposed extended design, where a set 

of name servers, ADCA agents and address configuration 

protocols provide configuration and naming services on 

both red and black network.  

 

Figure 3: IANetServ framework in JANSS architecture 

The ADCA, DAP, DRCP, and DCDP stay at the black 

network. The ADCA handles IP address management 

including maintaining address pools, address 

lease/collection, domain merging/splitting and updating 

configuration policy for reliable and autonomous 

configuration service. In particular, the DAP/DRCP/DCDP 

protocols will be placed on each IP radios which belong to 

different tactical network. Each air platform is associated 

with multiple IP addresses, static IP address (SIP) and 

dynamic network IP address (NIP). There is a global static 

IP address (GSIP_0 in the figure), associated with the AN 

Router on each air platform. The GSIP works as a global 

ID for the air platform. 

Our address configuration protocols also can be deployed 

in the red network. However, note that the hosts in red 

network are usually wired connected and their addresses 

are static. In this case, standard auto-configuration protocol 

such as DHCP can also be used. There is a set of local 

static IP addresses, associated with Red Router and local 

hosts (LSIP_1, LSIP_2, LSIP_3, LSIP_4). The Red Router 

works as a gateway router for the internal LAN on each air 

platform. Each mobile router in the wireless net is 

associated with a dynamically generated IP address, NIP. 

To ensure a successful communication between any two 

hosts (computers) located in any two air platforms through 

each type of wireless radio connection, each wireless 

communication radio will have a corresponding IP 

Mapping component to map the NIP address with the 

corresponding GSIP address. To maintain the network 

topology and connectivity information, each airborne 

platform need periodically exchange/update network 

information with others during the network operation time. 

In particular, the associated NIP of each airborne platform 

is updated in the IP mapping table. 

 

The LNS protocol also resides on the black network to 

provide naming service. To handle high node dynamics in 

a intermittent and bandwidth limited environments, table 

synchronization among LNS servers is critical. Our 

implementation and thorough evaluation confirms that 

LNS protocol handles node dynamics reliably and 

efficiently. This is exactly why LNS is proposed as part of 

name resolution service in IANetServ. As all user 

applications are on the red side, name resolution service is 

also required on the red network. While placing a name 

server on the red network, there are two contradictory 

goals. To ensure robust and autonomous operation, it is 

required to have redundant name servers. In contrast, it is 

also desirable to keep fewer name servers to limit the use 

of scarce network bandwidth, particularly when there are a 

significant number of updates. To meet requirements of 

airborne network, we believe one name server per red side 

of platform is a good solution. 

3. IANetServ Implementation 

For realistic feasibility study and thorough performance 

evaluation, we implemented the IANetServ architecture in 

IAI’s Java based discrete network simulator NetSim and 

Linksys WRT54G router. More detail description of each 

implementation follows. 

3.1 NetSim Simulation 

The NetSim simulator is specially developed for simulation 

and evaluation of advanced distributed algorithms for ad 

hoc mobile networks. It is based on over a decade of 

development effort of software agent-based infrastructure 

Cybele (http://products.i-a-i.com/), which is a Java-only 

layer that can be customized for the desired platform. It is a 

runtime environment built on the top of the Java 2 platform 

for control and execution of agents. The agent execution is, 

however, event-driven and controlled by Cybele


 rather 

than by JVM. A common basic network node structure 

http://products.i-a-i.com/
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provides the basis from which the network nodes for all 

protocols are derived. This basic network agent component 

is responsible for interacting with the simulation 

environment and for providing the software under test with 

the same inputs as it would experience if it were 

implemented in a real device.  

The NetSim simulator is able to explore distributed 

computing capabilities for evaluation of scalability of 

protocols, without traffic aggregation or pre-calculation 

steps, which allows for human-in-the-loop 

experimentation. In this architecture the nodes to be 

simulated are implemented using autonomous agents. Each 

agent/node generates, receives and processes packets 

independently, as it would on a real network. It is 

important to note that the code executing on each agent is 

no different from the code that would actually execute on 

the real system, except for the way in which they 

communicate with the environment.  

In our IANetServ architecture implementation in NetSim, 

each node is defined as an individual agent and its 

configuration is set by scenario file and configuration file. 

A scenario file specifies node movement (e.g., speed, path 

shape, relay point, etc) and enable/disable application 

access (e.g., data or real time traffic transfer). On the other 

hand, a configuration file defines initial node position and 

node specific information, e.g., host name, domain name, 

priority, initial IP pool size, etc. All detail functions of 

IANetServ are implemented, e.g., DRCP, DCDP, DAP, 

and LNS activities, etc. Each node selectively calls 

activities when necessary. We assume several tactical edge 

network is interconnected through a backbone network.

 

 
(a) Initial topology 

 
(b) Two domains are merged (in color green and pink) 

and some nodes leave its original domain 

 
(c) Isolated nodes elect a LNS server and form new domain (in 

color yellow) 

 
(d) New domain joined the backbone network. One node 

transmits a video streaming to a node in the domain 

which just joined the backbone 

Figure 4: Domain merging and splitting 

 

The Border Gateway Protocol (BGP) is the routing 

protocol used in backbone network to properly deliver LNS 

queries and responses among LNS. To achieve this goal, 

BGP and network service protocol suite were integrated 

with each other such that any BGP node can configure its 

IP address and get proper naming service through LNS 

server. Within each edge network, the Ad hoc On-Demand 

Distance Vector Routing (AODV) is used to transport data 

packets as well as network service protocol packets. The 

mobility pattern of backbone nodes mimics the Caspian 

Sea scenario (i.e., moving path forms a long eclipse), and 

the nodes in edge network follow some customized the 

mobility to demonstrate different network scenarios. 

Here we present two simulation scenarios. The first 

scenario tests a case where one node joins and leaves a 

domain. Although other nodes also fairly move, we call 
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that node the mobile node since its speed is much higher 

than others. Before the mobile node switches its domain, 

another node in the same domain transmits a video 

streaming to the mobile node. While the mobile node 

enters a new domain and reconfigures its address, a video 

transmission will be halted since the old IP address is no 

longer valid. Once a new IP address is assigned and all 

LNS tables are updated, the video transmission will be 

resumed. Note that a source node will send a LNS query 

again to its LNS server after it recognizes the mobile 

node’s domain change and IP address reconfiguration of 

the mobile node accordingly. Since all LNS servers are part 

of backbone network, all LNS queries and updates will be 

routed through BGP. Routing path is marked in red line 

and a popup window displays the video stream that has 

received.  

Figure 4 shows snapshots of the second scenario, where 

several domain merging and splitting are handled. In 

Figure 4, nodes in blue and red are backbone nodes which 

interconnect with two tactical edge networks in color green 

and purple, and third edge network (in color yellow) is 

isolated. As the domain in color yellow heads north, it 

receives a LNS broadcasting with higher domain priority 

(in color green). Upon receiving a LNS broadcasting, 

nodes merge into the new domain and reconfigure their IP 

address through DRCP/DCDP processes. Simultaneously, 

three nodes in green will leave their domain and form a 

new domain (see Figure 4(b)).  

As nodes are isolated, they cannot listen any LNS 

broadcasting and realize domain split. Later, new LNS 

server will be elected within the newly formed domain and 

it will also assign new IP address to all members (see 

Figure 4(c)). The three nodes keep moving until they are 

reconnected through the backbone network, and then a 

node in bottom domain transmits a video file to a node on 

top (see Figure 4(d)). In real scenarios, airborne platforms 

might have satellite link to prepare for the case when 

backbone connectivity is lost. However, we assume inter-

domain communication always go through the backbone 

network. Through the above two testing scenarios, we 

observed that the IANetServ architecture successfully 

handles domain merging/splitting and IP address 

assignment to dynamic nodes and resolves name in robust 

and efficient fashion. This simulation also confirms that 

LNS tables at each LNS server are efficiently and reliably 

synchronized.   

3.2 Router implementation 

To further test the performance of the IANetServ 

framework, we implemented it on the Linksys WRT54G 

routers. The router is selected since it is notable for being 

the first consumer-level network device that had its 

firmware source code released to satisfy the obligations of 

the GNU.  This allows programmers to modify the 

firmware to change or add new functionality. Its CPU 

speed is 240 MHz and the size of RAM and Flash is 8 MB 

and 2MB respectively. The OpenWrt [12] firmware is used 

in this research. To control network topology as we wanted 

and minimize interference among routers, we applied 50dB 

RF signal attenuator to the front of antenna. Note that 

communication range has shrunk from 150 feet to about 10 

feet. 

The DRCP and DCDP protocols are implemented in Linux 

using a scripting language and a custom program written in 

C to perform the actual sending of packets via unicast 

and/or broadcast. All protocols messages are sent via UDP 

as human-readable ASCII text.  Both DRCP and DCDP are 

implemented as a pair of actor and listener processes, with 

the actor process initiating actions on behalf of the current 

node and the listener process handling packets received on 

the DRCP and DCDP ports. The LNS implementation 

consists of two components. First, nodes use the LNS 

mechanism to look up another node’s IP address on top of 

the legacy DNS. Each LNS node runs an unmodified DNS 

server where any changes of the IP address to host name 

mapping triggers DNS server configuration update and 

reload. Second, to perform updates between multiple 

domains, LNS nodes periodically exchange 

LNS_UPDATE messages, advertising IP addresses 

assigned within their domain using the same format as in 

the DRCP_RENEW with the node ID, assigned IP, and 

time elapsed.  By comparing the time elapsed in the 

LNS_UPDATE message from another domain with the 

LNS node’s record of any IPs assigned within its own 

domain, each LNS node can determine which IP 

assignment is most recent and use this assignment in 

response to DNS queries.  The LNS_UPDATE messages 

can be easily incorporated into BGP or other routing data, 

however when few domains are present this may save 

minimal overhead and result in additional delay updating 

the IP and ID mappings.  

Figure 5(a) shows our test setup where a mobile node 

switches its domain back and forth. Each domain consists 

of 5~6 routers which form one or two hop neighbors with 

each other. Each router competes with members in a 

domain to be elected as a LNS server. We use uptime of 

each router as the mean of priority (i.e., longer uptime has 

higher priority). One router (node 8) was put on the robot 

which travels between two domains (domain 12 and 13). 

For the debugging and demonstration purpose, we also 

developed a Graphic User Interface (GUI) as shown in 

Figure 5(b). Left panel shows the progress of IP pool and 

address assignment. Arrows indicates which nodes is 

assignee and assigner. Numbers indicate the last eight bits 

of IP address. Note that each domain has its own IP prefix. 

/wiki/Firmware
/wiki/GNU
/wiki/Firmware
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Right panel shows connectivity and routing path. We used 

the Optimized Link State Routing (OLSR) protocol in 

Quagga package [13] for intra-domain routing. To emulate 

backbone connectivity, we used company Ethernet for LNS 

nodes to exchange and update their LNS tables. To validate 

and evaluate the performance of IANetServ 

implementation, we set a node in domain 12 periodically 

ping the mobile node throughout the test. The green and 

red squares at the bottom of GUI show whether ping 

message was successful or not. In GUI display, green 

means ping message goes through. 

 

        

(a) Test setup with 3 domains and one mobile router 

   

(b) GUI display                                       (c) GUI display with red/black network connectivity  

Figure 5: IANetServ router implementation and GUI design 

To implement emulation of red/black network separation, 

we assign each router a unique host name ID.iai, which is 

updated and served by the LNSs. This corresponds to GSIP 

and it is map the router’s black IP address. We also 

assigned a unique red IP address, since red IP address does 

not change frequently. The Black IP address was the only 

one that dynamically assigned and updated at each LNS 

server. We use bridge control to interconnect emulated red 

and black network. In our GUI as in Figure 5(c), the 

connectivity between multiple black IP addresses is 

represented dynamically by asking routers to ping the 

ID.iai (or GSIP) of other routers. This process requires 

mapping between GSIP and black IP address and name 

resolution at each LNS server. To emulate the VPN tunnel 

between any pair of red network entities, Vtun [14] is used 

to setup VPN tunnels. Vtun is a tunneling program with a 

client/server model.  It is flexible in supporting many types 

of tunneling and allowing for traffic to be compressed and 

encrypted. The bottom table of GUI shows reachability of 

any pair of red host through bridge control and Vtun. 

4. CONCLUSIONS 

The topology of airborne networks continuously changes 

and channel bandwidth is limited, thus autonomous and 

reliable yet efficient network service architecture is highly 

desired. In this paper, we summarized our effort on 

designing an Integrated robust and Auto-configurable 

Network Service (IANetServ) architecture to handle the 

network dynamics and bandwidth constraints over airborne 

networks.  We also presented our implementation on agent 

based Java simulator and Linksys routers. Our evaluation 
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using simulation and hardware implementation confirmed 

the effectiveness and robustness of IANetServ architecture. 

While existing works on network service dedicated to 

airborne networks are either limited to few aspect of 

network service or based on the approached in wired 

network, the IANetServ architecture is the first complete 

solution for robust, scalable, and autonomous network 

service in airborne network environments. Our on-going 

effort is to finalize our hardware implementation and polish 

our design.  
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